Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 15, 2026
-
Genome function requires regulated genome motion. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we introduce an approach to tile mammalian chromosomes with self-mapping fluorescent labels and track them at ultraresolution. We find that sequences separated by submegabase distances transition to proximity in tens of seconds. This rapid search is dependent on cohesin and is exhibited only within domains. Domain borders act as kinetic impediments to this search process, rather than structural boundaries. The genomic separation–dependent scaling of the search time for cis interactions violated predictions of diffusion, suggesting motor-driven folding. We also uncover cohesin-dependent processive motion at 2.7 kilobases per second. Together, these multiscale dynamics reveal the organization of the genome into kinetically associated domains.more » « lessFree, publicly-accessible full text available September 18, 2026
-
Free, publicly-accessible full text available June 24, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
On a finite probability space, we consider the problem of fair pricing of contingent claims and its sensitivity to a distortion of information, where we follow the weak information modeling approach. We show that, in complete models, or more generally, for replicable contingent claims, the weak information does not affect the fair price. For incomplete models, this is not the case for non-replicable claims, where we obtain explicit formulas for the information premium and correction to an optimal trading strategy. We illustrate our results by an example, where we demon- strate that under weak information, the fair price can increase, stay the same, or decrease. Finally, we perform the stability analysis for the information premium and the correction of the optimal trading strategy to perturbations of the contingent claim payoff, stock price dynamics, and the reference probability measure.more » « less
-
Abstract For patients who have difficulty in mechanical cleaning of dental appliances, a denture cleaner that can remove biofilm with dense extracellular polymeric substances is needed. The purpose of this study is to evaluate the efficacy of diatom complex with active micro-locomotion for removing biofilms from 3D printed dentures. The diatom complex, which is made by doping MnO2nanosheets on diatom biosilica, is mixed with H2O2to generate fine air bubbles continuously. Denture base resin specimens were 3D printed in a roof shape, andPseudomonas aeruginosa(107 CFU/mL) was cultured on those for biofilm formation. Cleaning solutions of phosphate-buffered saline (negative control, NC), 3% H2O2with peracetic acid (positive control, PC), denture cleanser tablet (DCT), 3% H2O2with 2 mg/mL diatom complex M (Melosira, DM), 3% H2O2with 2 mg/mL diatom complex A (Aulacoseira, DA), and DCT with 2 mg/mL DM were prepared and applied. To assess the efficacy of biofilm removal quantitatively, absorbance after cleaning was measured. To evaluate the stability of long-term use, surface roughness, ΔE, surface micro-hardness, and flexural strength of the 3D printed dentures were measured before and after cleaning. Cytotoxicity was evaluated using Cell Counting Kit-8. All statistical analyses were conducted using SPSS for Windows with one-way ANOVA, followed by Scheffe’s test as a post hoc (p < 0.05). The group treated with 3% H2O2with DA demonstrated the lowest absorbance value, followed by the groups treated with 3% H2O2with DM, PC, DCT, DCT + DM, and finally NC. As a result of Scheffe’s test to evaluate the significance of difference between the mean values of each group, statistically significant differences were shown in all groups based on the NC group. The DA and DM groups showed the largest mean difference though there was no significant difference between the two groups. Regarding the evaluation of physical and mechanical properties of the denture base resin, no statistically significant differences were observed before and after cleaning. In the cytotoxicity test, the relative cell count was over 70%, reflecting an absence of cytotoxicity. The diatom complex utilizing active micro-locomotion has effective biofilm removal ability and has a minimal effect in physical and mechanical properties of the substrate with no cytotoxicity.more » « less
-
Reconstructing 3D objects in natural environments requires solving the ill-posed problem of geometry, spatially-varying material, and lighting estimation. As such, many approaches impractically constrain to a dark environment, use controlled lighting rigs, or use few handheld captures but suffer reduced quality. We develop a method that uses just two smartphone exposures captured in ambient lighting to reconstruct appearance more accurately and practically than baseline methods. Our insight is that we can use a flash/no-flash RGB-D pair to pose an inverse rendering problem using point lighting. This allows efficient differentiable rendering to optimize depth and normals from a good initialization and so also the simultaneous optimization of diffuse environment illumination and SVBRDF material. We find that this reduces diffuse albedo error by 25%, specular error by 46%, and normal error by 30% against single and paired-image baselines that use learning-based techniques. Given that our approach is practical for everyday solid objects, we enable photorealistic relighting for mobile photography and easier content creation for augmented reality.more » « less
-
Abstract Freestanding single‐crystalline nanomembranes have gained increasing attention as promising platforms for both fundamental research and advanced electronic applications. However, internal stress gradients arising from epitaxial strain within the oxide membranes often result in high crack density during fabrication, leading to unsatisfactory yield and limited reliability. Here, an elastically graded polymer (EGP) support that enables wafer‐scale crack‐free transfer of single‐crystalline oxide membranes are developed. The engineered elastic gradient within the EGP accommodates the internal strain of the oxide membrane, effectively minimizing crack formation during lift‐off. Notably, this ability to spatially control the interfacial stiffness between the polymer and the oxide film enables crack suppression under both tensile and compressive strain. This approach provides a robust and scalable route to producing high‐quality freestanding oxide membranes, paving the way not only for their integration into novel device architecture but also opening new avenues for scientific exploration of functional systems.more » « less
An official website of the United States government
